Singular Value Reassignment with Low Rank Matrices

نویسندگان

  • DELIN CHU
  • MOODY CHU
چکیده

Abstract. Analogous to the pole assignment problem where eigenvalues of a square matrix are relocated, this paper considers the problem of reassigning singular values of a rectangular matrix by additive low rank matrices. Precise and easy-to-check necessary and sufficient conditions under which the problem is solvable are completely characterized, generalizing some traditional singular value inequalities. The constructive proof makes it possible to compute such a solution numerically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Complex singular Wishart matrices and applications∗

In this paper, complex singular Wishart matrices and their applications are investigated. In particular, a volume element on the space of positive semidefinite m×m complex matrices of rank n < m is introduced and some transformation properties are established. The Jacobian for the change of variables in the singular value decomposition of general m × n complex matrices is derived. Then the dens...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Comparison of Rank Revealing Algorithms Applied to Matrices with Well Defined Numerical Ranks

For matrices with a well defined numerical rank in the sense that there is a large gap in the singular value spectrum we compare three rank revealing QR algorithms and four rank revealing LU algorithms with the singular value decomposition. The fastest algorithms are those that construct LU factorizations using rook pivoting. For matrices with a sufficiently large gap in the singular values all...

متن کامل

Subspace Iteration Randomization and Singular Value Problems

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004